Collect soil. If your garden area is small, like a small gardening bed, take a sample from the middle of the bed. If the area is large, like a lawn, collect small samples at evenly spaced intervals across the area. Then mix these small samples together to form a representative sample.

To collect soil, scrape away the first two inches of soil and dig a hole 6 inches down. Then place a trowel full of soil (free of large organic matter and rocks) into a plastic bag and label the bag with the soil’s origin.

The soil must be sifted before testing, spread it out on an old cookie tray to dry for a day or so. Once the sample is sufficiently dry, sift it through a wire-mesh sieve or an old colander to remove small stones and roots and to break down any lumps of soil.

As the sedimentation progresses, check the sample periodically to watch the layers form and to note the size of the particles settling out.

Layer Results:
- Sand particles are the heaviest of the three and settle out of the solution after about a minute.
- The sand layer is coarser in texture than the silt and clay. Silt is the next heaviest particle and will settle out after about an hour.
- The silt layer is darker than the sand. Clay, the lightest particle in the mix, can take from one to two days to settle out of the solution. The clay layer that settles on top is fine textured and light in color.
Texture Jar Test - Part II

Step 1:
To figure out the percentages of sand, silt, and clay in your sample, measure the total amount of sediment with a ruler.

Step 2:
This number represents 100 percent of the soil sample. To derive the percentages of sand, silt, and clay in the sample, measure the amount of each layer and divide by the amount of total sample.

Step 3:
Derive the percentages for each layer of sand, silt, and clay.

Step 4:
Finally use a soil texture triangle to interpret your results.

Step 5:
a. Locate the clay percentage of your soil on the left side of the triangle and follow the white line across.
b. Then locate the sand percentage along the base of the triangle and follow the white line up to where it intersects with the white line you selected.
c. The white line at this point represents the percentage of silt in the soil sample.
d. The shaded area that contains your point describes your soil’s textural class.

Understanding Your Results:
• Generally, sandy soils tend to be low in organic matter content, low in ability to retain moisture and nutrients, and drain rapidly.
• Finer-textured soils generally are more fertile, contain more organic matter. They are better able to retain moisture and nutrients, and permit less rapid movement of air and water. All of this is good up to a point.
• When soils are so fine-textured as to be classified as clayey, however, they are likely to exhibit properties which are somewhat difficult to manage or overcome. Such soils are often too sticky when wet and too hard when dry to cultivate.